

Ionicity of Intramolecular Charge-Transfer Molecule $D^{\delta+}-\pi-A^{\delta-}$ Based on 1,3,3-Trimethyl-2-methyleneindoline and 7,7,8,8-Tetracyanoquinodimethane

Gunzi Saito,*,† Chin-Hong Chong,*,† Masaru Makihara,† Akihiro Otsuka,‡ and Hideki Yamochi†

Division of Chemistry, Graduate School of Science, and Research Center for Low Temperature and Materials Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan

Received July 17, 2002; E-mail: saito@kuchem.kyoto-u.ac.jp; c.chong@kuchem.kyoto-u.ac.jp

The intramolecular charge-transfer (CT) molecules linked by a π -bond (D^{$\delta+-\pi$ -A^{$\delta-$}; D, donor; A, acceptor; δ , degree of CT)} have potentially been investigated as functional soft materials for dyes,¹ photovoltaic² and photochromic³ materials, nonlinear optics,⁴ rectifiers,⁵ conductors,⁶ and magnets.⁷ Although the ionicity (δ) of the intermolecular CT compounds has been quantitatively discussed in a description of the electronic properties of organic (super)conductors⁸ and of their phase transitions (Peierls, Mott, charge order, neutral-ionic).^{8,9} not very many quantitative experiments concerning functionality versus δ have been done for the *intramo*lecular compounds except for a few cases,4b,c because of the difficulty in obtaining δ of $D^{\delta +} - \pi - A^{\delta -}$. Either a complete neutral or a zwitterionic ground state ($\delta = 0$ or 1) has often been anticipated.^{1-3,4a,d,5,7,10} We report here a simple method to evaluate the relative ionicity of $D^{\delta+}-\pi-A^{\delta-}$ molecules and discuss some functionality versus δ relations, exemplifying conventional D- π -A molecules 1-R (Chart 1), prepared by the reaction between 1,3,3trimethyl-2-methyleneindoline (1) and R-TCNQ according to the procedures reported previously.^{3,4d,5a}

The 1-R exhibits, in general, two peaks (labeled peaks A and B) between $\lambda = 700-850$ nm and two shoulders between $\lambda = 550-700$ nm in solution (Figure 1a) similar to those of the analogous compounds.^{1,3,4d,5} Peak B is used in the following analysis because the intensity of peak A is sensitive to the solvent used. When the overlap of the peaks was significant, the positions of the peaks were determined by line deconvolution into four Gaussian bands.

In polar solvents, a hypsochromic band shift was observed for the **1**-R derived from a strong acceptor in the TCNQ system, confirming that its ground state was ionic. However, in solvents less polar than chlorobenzene (PhCl), a bathochromic band shift was observed,^{1,11} indicating a change of ground state from the ionic to neutral state. Consequently, we exclude the solvents having smaller Reichardt $E_{\rm T}$ values¹² than that of PhCl in the evaluation of δ so as not to mix opposite solvatochromic effects for each 1-R.

The examination of the transition energy of peak B ($hv_{CT}(B)$) in connection with the relative permittivity ϵ_r and E_T of solvent revealed that (1) E_T has a linear relation with $hv_{CT}(B)$ (eq 1, Figure 1b) but ϵ_r does not, and (2) the slope *a* of each line varies in good accordance with the redox potentials of R-TCNQ (Table 1).

$$h\nu_{\rm CT}(\mathbf{B}) = aE_{\rm T} + b \tag{1}$$

The CT energy for an ionic complex $D^{\delta+}A^{\delta-}$ ($\delta \ge 0.5$), $h\nu_{CT}I$ (*I*: ionic, eq 2), is related to ϵ_r in terms of both the Coulomb attractive ($\sim e^2/\epsilon_r r$) and the solvation ($\Delta G \approx 1 - 1/\epsilon_r$) energies in solution.¹⁴ Here I_D is the ionization potential of D, E_A is the electron affinity of A, *r* is the distance between $D^{\delta+}$ and $A^{\delta-}$, ΔG is the difference between the solvation energies for D^0A^0 and $D^{1+}A^{1-}$

Figure 1. (a) Absorption spectrum of 1-CF₃ in PhCl. (b) Plot of transition energy of the peak B of 1-R (R = F₄(Δ), F₂(\bigcirc), H(\square), (MeO)₂ (\diamond)) vs $E_{\rm T}$ value (a, methanol; b, acetonitrile; c, acetone; d, PhCl). For other 1-R's, see the Supporting Information. (c) Plot of redox potentials of 1-R (\otimes , E_1 ; \bigcirc , E_2 ; \bigcirc , E_3) and corresponding TCNQs (\blacksquare , \square) vs Hammett σ .¹³ The chemical species in the regions separated by solid lines are labeled by M²⁺, M⁺⁺, M⁰, and M⁺⁻ for M = 1-R (R = a, F₄; b, CF₃; c, F₂; d, F; e, H; f, Me; g, (MeO)₂; h, (EtO)₂).

Chart 1. Chemicals in Text

Table 1. Slope in Eq 1 and Estimated CT Degree of 1-R

		K							
	F ₄	CF ₃	F_2	F	Н	Ме	(MeO) ₂	(EtO) ₂	
$a(imes 10^{-2}) \ \delta^a$	56.3 1.00	23.6 0.71	23.4 0.71	4.19 0.54	0.89 0.51	$-0.75 \\ 0.49$	$-0.45 \\ 0.50$	$-0.85 \\ 0.49$	

 a Direct use of peak B (use of peak B by deconvolution of the spectrum causes a scatter of δ by -0.00-0.03).

states, and X is the resonance stabilization energy.

$$h\nu_{\rm CT}^{\ \ I} = -I_{\rm D} + E_{\rm A} + (2\delta - 1){\rm e}^{2/\epsilon_{\rm r}}r - (2\delta - 1)\Delta G + X$$
 (2)

It is reasonably expected that $h\nu_{\rm CT}{}^{\rm N} \approx h\nu_{\rm CT}{}^{\rm N}$ at $\delta = 0.5$, where $h\nu_{\rm CT}{}^{\rm N}$ is for a neutral complex ${\rm D}^{\delta+}{\rm A}^{\delta-}$ ($\delta \leq 0.5$), resulting in a practically $\epsilon_{\rm r}$ -independent CT energy.¹⁵ We presume that eq 2 for a ${\rm D}^{\delta+}{\rm A}^{\delta-}$ complex is valid for a ${\rm D}^{\delta+}-\pi-{\rm A}^{\delta-}$ molecule as well.

The $E_{\rm T}$ values are the *intramolecular* CT energies of the zwitterionic Reichardt dye (Chart 1, $\delta = 1$) in various solvents¹² and are formulated by eq 3, where r', $\Delta G'$, and X' represent the same meaning for the corresponding terms in eq 2

$$E_{\rm T} = -I_{\rm D-\pi-A} + E_{\rm D-\pi-A} + {\rm e}^2/\epsilon_{\rm r} r' - \Delta G' + X' \quad (3)$$

Equations 2 and 3 afford an apparent linear relation between $h\nu_{CT}$ and E_T provided that δ is insensitive to E_T . If δ is a function

[†] Graduate School of Science. [‡] Research Center for Low Temperature and Materials Sciences.

of $E_{\rm T}$, a quadratic behavior is expected in a plot of $h\nu_{\rm CT}$ versus $E_{\rm T}$, contrary to the observed linear behavior in Figure 1b.

To go further, we need information about (I - E) of 1-R. Figure 1c compares the redox potentials of 1-R and respective R-TCNO with the Hammett σ values.¹³ Every 1-R exhibits three one-electron redox steps. The first two, in the $\pm 0.7 - 1.0$ V range (E_1 , \odot ; E_2 , \bigcirc), are insensitive to the σ values, showing that these two are mainly associated with the D-part. Their much more positive values than those of $E_{1/2}^{0/1-}$ of the corresponding R-TCNQ (\blacksquare) confirm that these steps are ascribed to essentially $M^{2+}(D^{2+}-\pi - A^0) \rightleftharpoons$ $M^{\bullet+}(D^{\bullet+}-\pi-A^0) \rightleftharpoons M^0(D^0-\pi-A^0)$; here M represents a whole D- π -A molecule. The third E_3 at -0.25 to -0.50 V (\bullet) shows a linear dependence on the σ value with both a much more negative magnitude and a less steep slope as compared to $E_{1/2}^{1-/2-}$ of the corresponding R-TCNQ (D), indicating that this step is ascribed to $M^{0}(D^{0}-\pi-A^{0} \leftrightarrow D^{\bullet+}-\pi-A^{\bullet-}) \rightleftharpoons M^{\bullet-}(mainly D^{\bullet+}-\pi-A^{2-}).$ Therefore, Figure 1c indicates that the (I - E) process of M⁰, M⁺⁺ $\rightleftharpoons M^0 \rightleftharpoons M^{\bullet-}$, which corresponds to the separation between E_2 and E_3 (ΔE), varies weakly with the σ value ($\Delta E = -0.21\sigma +$ 1.12), and this implies that the (I - E) term in eq 3 is a linear function of δ . Hence, eq 3 is modified to eq 4.

$$h\nu_{\rm CT}^{\ \ I} = (2\delta - 1)(e^{2}/\epsilon_{\rm r}r' - \Delta G' + C_1) + (X' - C_2) \quad (4)$$

To evaluate δ , we need the magnitude of a slope a_1 of a plot of $h\nu_{\rm CT}$ versus $E_{\rm T}$ for the 1-R of $\delta = 1$, then eq 4 is expressed as

$$h\nu_{\rm CT}^{\ \ I} = (e^2/\epsilon_{\rm r}r' - \Delta G' + C_1) + (X' - C_2) = a_1E_{\rm T} + b_1$$
 (5)

The ratio $a/a_1 (\approx 2\delta - 1)$ then gives the ionicity δ on the reasonable assumption that the r' and $\Delta G'$ values do not vary significantly among the 1-R molecules. By taking the δ of 1-F₄ as 1, the relative CT degree δ is calculated (Table 1).

The relation between the estimated δ values in solution and the $E_{1/2}^{0/1-}$ of R-TCNO is utilized for the synthesis of new 1-R for desired δ . Also, the relation of their redox properties such as that in Figure 1c is utilized to elucidate the ionicity-functionality relation of a D $-\pi$ -A unimolecule.

Interestingly the δ of 1-H is close to 0.5, consistent with $E_{\rm T}$ insensitive CT energy (Figure 1b, \Box), giving rise to nearly the same electronic structures between the ground $D^{\delta+}-\pi - A^{\delta-}$ and its excited $D^{(1-\delta)+} - \pi - A^{(1-\delta)-}$ states by *intramolecular* electron transfer. Thus, 1-H is expected to be useful for the intermolecular electron transport but inactive for intramolecular rectification, in which a molecule with a high δ value like 1-F₄ is required. As for an indicator of solvent^{1,12} having a wide solvatochromic effect, a system not only with a large slope in Figure 1b but also with a small r'value is important according to eq 4. As for a photovoltaic material, which requires a stable charge-separated state, the 1-R system is not adequate because it exhibits a spontaneous relaxation of the charge-separated state to the neutral one as observed in Figure 1c.

The estimated δ has a fairly good relation with the difference of the dipole moments of ground (μ_g) and excited (μ_e) states or the molecular hyperpolarizability (β), calculated on the basis of the molecular structures.¹⁶ So far, the structural analysis of 1-R $(R = F_2, F, H, (MeO)_2, (EtO)_2)$ has been exploited, and the $\mu_g(D)$, $\mu_{\rm e}({\rm D})$, and $\beta(10^{-30} \,{\rm cm}^5 \,{\rm esu}^{-1})$ values of (25.5, 10.2, -401), (24.5, 10.1, -382), (20.6, 13.9, -218), (15.6, 15.5, -53.6), and (16.2, 15.5, -66.4), respectively, were evaluated. The calculated (μ_g – $\mu_{\rm e}$) decreases with decreasing δ and approaches zero when δ becomes 0.49–0.50 as is expected from $(\mu_e - \mu_g) = (1 - 2\delta)er'$. The β values behave in excellent agreement with eq 6 (Figure 2)

Figure 2. Circles indicate the relation between the molecular hyperpolarizability β and ionicity (δ) of 1-R (R = F₂, F, H, (MeO)₂, (EtO)₂). Dotted and dashed lines represent eq 6 with a coefficient of 1.3×10^5 and horizontally shifted by 0 and -0.05, respectively.

$$\beta \propto \mu_{\rm ge}^{2} (\mu_{\rm e} - \mu_{\rm g}) \propto \delta^{3} (1 - \delta)^{3} (1 - 2\delta) \tag{6}$$

which is derived from the equation proposed by Ducuing et al.¹⁷ Here μ_{ge} is the transition dipole moment between ground and excited states. The agreement observed in Figure 2 confirms the validity of the estimated δ values and is in good accordance with those of recent works on the polyene dyes in terms of bond-length alternation^{4b} or mixing between the limiting-resonance forms,^{4c} both of which reflect the ionicity of D- π -A indirectly. For the β value the δ values of 0.25-0.35 and 0.65-0.75 are required as well as a large r' value and much concentrated D and A moieties per unit volume.

In summary, we reported a simple method to evaluate the relative ionicity δ and discussed the functionality versus δ relations for the *intramolecular* CT molecules $D^{\delta+}-\pi - A^{\delta-}$.

Acknowledgment. The work was supported by COE Research on Elements Science (12CE2005), JSPS, and NEDO.

Supporting Information Available: Experimental details. This material is available free of charge via the Internet at http://pubs.acs.org.

References

- (1) Bell, N. A.; Crouch, D. J.; Simmonds, D. J.; Goeta, A. E.; Gelbrich, T.; Hursthouse, M. B. J. Mater. Chem. 2002, 12, 1274.
- Higashino, K.; Nakaya, T.; Ishiguro, E. J. Photochem. Photobiol. A: Chem. (2)**1994**, 79, 81.
- (3) Ashwell, G. J. Thin Solid Films 1990, 186, 155.
- (a) Katz, H. E.; Singer, K. D.; Sohn, J. E.; Dirk, C. W.; King, L. A.; Gordon, H. M. J. Am. Chem. Soc. 1987, 109, 6561. (b) Marder, S. R.; Gorman, C. B.; Meyers, F.; Perry, J. W.; Bourhill, G.; Bredas, J.-L.; Pierce, B. M. Science 1994, 265, 632. (c) Barzoukas, M.; Runser, C.; Fort, A.; B. N. Science 1997, 205, 052. (b) Barbotas, M., Runsci, C., Fol, R., B-Desce, M. Chem. Phys. Lett. 1996, 257, 531. (d) Szablewski, M.; Thomas, P. R.; Thornton, A.; Bloor, D.; Cross, G. H.; Cole, J. M.; Howard, J. A. K.; Malagoni, M.; Meyers, F.; Bredas, J.-L.; Wenseleers, W.; Goovaerts, E. J. Am. Chem. Soc. 1997, 119, 3144.
- (a) Metzger, R. M.; Chen, B.; Höpfner, U.; Lakshmikantham, M. V.; (a) McLgu, K. M., Chen, D., Hopher, C., Eassimikannan, M. V., Vuillaume, D.; Kawai, T.; Wu, X.; Tachibana, H.; Hughes, T. V.; Sakurai, H.; Baldwin, J. W.; Hosch, C.; Cava, M. P.; Brehmer, L.; Ashwell, G. J. J. Am. Chem. Soc. **1997**, *119*, 10455. (b) Metzger, R. M. Acc. Chem. Res. **1999**, *32*, 950.
- (6) Neilands, O. *Mol. Cryst. Liq. Cryst.* 2001, *355*, 331.
 (7) Banister, A. J.; Bricklebank, N.; Lavender, I.; Rawson, J. M.; Gregory, C. I.; Tanner, B. K.; Clegg, W.; Elsegood, M. R. J.; Palacio, F. *Angew. Chem., Int. Ed. Engl.* 1996, *35*, 2533.
- (8) Ishiguro, T.; Yamaji, K.; Saito, G. Organic Superconductors, 2nd ed.; Springer-Verlag: Berlin, 1998. (b) Saito, G.; Ferraris, J. P. Bull. Chem. Soc. Jpn. 1980, 53, 2141. (c) Torrance, J. B. Acc. Chem. Res. 1979, 12, 79.
- (a) McConnell, H. M.; Hoffman, B. M.; Metzger, R. M. Proc. Natl. Acad. Sci. U.S.A. 1965, 53, 46. (b) Torrance, J. B.; Vazquez, J. E.; Mayerle, J. (9)J.; Lee, V. Y. Phys. Rev. Lett. 1981, 46, 253. (c) Seo, H. J. Phys. Soc. Jpn. 2000, 69, 805.
- (10) (a) Alcalade, E.; Dinares, I.; Elguero, J.; Fayet, J.-P.; Vertut, M.-C. Miravittlles, C.; Molins, E. J. Org. Chem. 1987, 52, 5009. (b) Catalan, J. Mena, E.; Meutermans, W.; Elguero, J. J. Phys. Chem. 1992, 96, 3615.
 (c) Broo, A.; Zerner, M. C. Chem. Phys. 1995, 196, 407, 423.
- (11) Runser, C.; Fort, A.; Barzoukas, M.; Combellas, C.; Suba, C.; Thiebault, A.; Graff, R.; Kintzinger, J. P. Chem. Phys. 1995, 193, 309.
- (12) Reichardt, C. Chem. Rev. 1994, 94, 2319.
- (13) Swain, C. G.; Lupton, E. C., Jr. J. Am. Chem. Soc. 1968, 90, 4328. (14) Foster, R. Organic Charge-Transfer Complexes; Academic Press: London,
- 1969
 - (15) Förster, Th. Z. Elektrochem. 1939, 45, 549. (16) Calculated by INDO/S Hamiltonian (20 \times 20 CI) using the MOS-F program package.
 - (17) Ducuing, J.; Flytzanis, C. Second-Order Optical Processes in Solids. In Optical Properties of Solids; Abeles, F., Ed.; North-Holland Publishing Co.: Amsterdam, 1972; p 863. JA027749P